
Var_Checker

Paul Hickman

Var_Checker ii

COLLABORATORS

TITLE :

Var_Checker

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Hickman April 15, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Var_Checker iii

Contents

1 Var_Checker 1

1.1 AMOSPro Variable Checker Version 1.06 . 1

1.2 Varchecker / Introduction . 1

1.3 Varchecker / Requirements . 2

1.4 Varchecker / Distribution . 2

1.5 Varchecker / Glossary . 2

1.6 VarChecker / Installation . 3

1.7 VarChecker / Usage . 4

1.8 VarChecker / Checks / Undefined Local Variables . 6

1.9 VarChecker / Checks / Undefined Shared & Global Variables . 6

1.10 VarChecker / Checks / Unreferenced Local Variables . 7

1.11 VarChecker / Checks / Unreferenced Shared & Global Variables . 7

1.12 VarChecker / Checks / Unused Shared Variables . 7

1.13 VarChecker / Checks / Unused Shared & Global Variables . 8

1.14 VarChecker / Checks / Global Variables that are shared . 8

1.15 VarChecker / Checks / Variables Made Global After Use . 8

1.16 VarChecker / Checks / Labels That Are Procedure Names . 9

1.17 VarChecker / Checks / Variable Name Missing After A ’Next’ Instruction . 9

1.18 VarChecker / Checks / Misuse Of Constant Variables . 9

1.19 Varchecker / Miscellaneuos . 10

1.20 VarChecker / Cavats . 10

1.21 VarChecker / Suggestions For Use . 11

1.22 VarChecker / Program History . 12

1.23 VarChecker / To Do . 13

1.24 VarChecker / Cavat Reports :-) . 14

Var_Checker 1 / 14

Chapter 1

Var_Checker

1.1 AMOSPro Variable Checker Version 1.06

AMOS Pro Variable Checker Version 1.06

By Paul Hickman E-mail: ph@doc.ic.ac.uk

Introduction

Requirements

Installation

Usage

Miscellanous

Cavats

Suggestions For Use

Program History

To Do
Cavat Reports

1.2 Varchecker / Introduction

Introduction

The variable checker is an accessory program which scans another
programs source from the AMOS Pro editor, and reports possible
errors in the use of variable names that AMOS Pro does not
normally detect. This helps debug programs, optimises them by
allowing to remove assignments that are unneccessary, and leads

Var_Checker 2 / 14

to better programming practice.

Version 1.06 now includes context sensitive on-line help - Just
press the ‘Help’ button on any dialog box, or the help key on the
keyboard to be taken straight to the relevant Amigaguide help
page.

1.3 Varchecker / Requirements

Requirements

- Any version of AMOS Pro. (Doesn’t work with AMOS Creator)

- Enough memory to load the accessory, and the program to check
simultaneously.

- Easylife V1.08+ (Supplied)

1.4 Varchecker / Distribution

Distribution Conditions

This progam may be freely distributed, as long as no profit is
made from doing so. It may not be put on a disk together with
programs for which a profit is made from distributing them.

It may be distributed seperately from the easylife archive, but
AMOSPro_EasyLife.lib & Easylife.Library should be included along
with this document. However please include a readme file describing
what easylife is, and how to get the full distribution with this
program (You can crib this from the Readme.Guide).

1.5 Varchecker / Glossary

Glossary

Reference / Referal

A Reference to a variable is where the variable is used in the
arguments of an AMOS function, or command where it’s value is
read, and not altered. The following are all references to VAR:

Print "The Answer is:";VAR
_CALL_THE_PROCUEDRE[1,"Fred",VAR,False]
X=4+VAR*2
End Proc[VAR]

Declaration

Var_Checker 3 / 14

The declaration of a variable notifies AMOS that it exists. All
Definitions/Assignments are also declarations, as are variable
names in Shared & Global statements.

Definition / Assignments

The definition / assignment of a variable is where the value of
the variable is set by an AMOS command, or the ’=’ operation,
without refering to VAR. The following are all definitions of
VAR, as they all set a new value of VAR which is not based on any
previous value of VAR:

VAR=4
Read VAR
Input "Enter Value Of Var:";VAR
Input #1,VAR;
Line Input #1,VAR
Procedure A_PROCEDURE[VAR]

These are not definitions of VAR, as they always require VAR to
be set (Or implicitly take it to be 0 if it isn’t)

VAR=VAR+4 (Also a reference to VAR)
Add VAR,6
Dec VAR

1.6 VarChecker / Installation

Installation

From V1.02 onwards, Variable Checker is run from the AMOSPro
user menu ONLY. This involves the following installation procedure:

1) Copy the VarChecker.AMOS program to its permanent location, if it
is not already there (The easylife installer script does this).

2) Select "Add Option" on the user menu. Enter ’Var Check’ as the
option name.

3) Select the new Var Check option to assign a program to, then select
the VarChecker.AMOS program.

4) In the request that appears, enter the command line of ’CHECK’, and
switch on the options ’Load As Hidden Program’ & ’Keep After Run’.
This is very important. Press OK.

5) Select the Var Check option again, and press the keys

Var_Checker 4 / 14

Control-Shift-V.

6) Repeat steps 2-5 to create a second menu option ’Var Report’, but
this time set the command line to ’REPORT’ and the keyboard
shortcut to Control-V.

7) Select ’Save Default Configuration’ from the Config menu to save
the 2 new menu options.

8) To activate the on-line help feature make sure AmosGuide.AMOS is
correctly installed as the AMOSPro help file viewer, and that the
‘Docs’ drawer from Easylife archive 2 is a component of your
HELP: assignment. VarChecker will read the path AMOSPro uses to
access AmosGuide.

1.7 VarChecker / Usage

Usage

To perform a variable check, load the AMOSPro program to be
checked and select its window. Then select the ’Var Check’
option from the user menu, or press Control-Shift-V. The
variable checker options page will then appear. Most of this
page is taken up by 11 switches to enable/disable the various
checks that can be made:

F1: Undefined Local Variables

F2: Undefined Shared / Global Variables

F3: Unreferenced Local Variables

F4: Unreferenced Shared / Global Variables

F5: Unused Shared Variables

F6: Unused Shared / Global Variable

F7: Global Variables that are shared

F8: Variables made Global after use

F9: Labels that are procedure names

F10: Variable Name Missing After A ’Next’ Instruction

ESC: Misuse Of Constant Variables
Three other error checks are also performed, which cannot ←↩

be

Var_Checker 5 / 14

disabled. There are:

- A check for variable names which are the same as procedure
names. Don’t do this, it is not only confusing to the reader of
the program, it is confusing to the variable checker itself!

- A check for global or shared variables appearing in the format
argument lists of a procedure defintion. This definitely should
not be done with global variables, or shared variables which are
shared with the procedure they appear in the header of. To use
a variable which is shared in another procedure is not such a
major problem, but should still be avoided.

- A check for procedures which are never called. NOTE:This will not
detect calls to procedures via Menu$ "PR" strings.

There are three control buttons at the bottom of the requester:

Stored

Perform a variable check, but to not report all the errors
immediately. Instead they are stored in a data bank, and at the
end of the check, the last error found in the program is
reported, and the check ends.

To display the rest of the errors, select the ’Var Report’ option
from the user menu (Or press Control-V). The means you can
correct the errors as you go.

NOTE: The errors are reported in order of the line number the
occur on, last to first. This is done backwards so you don’t
muck up the line numbering of stored errors by inserting new
lines when correcting the current error.

NOTE: This will not work properly if you did not select the
’Keep After Run’ option when installing the variable checker.

Interactive

This is similar to the old versions of variable checker - A
requester pops up when each error is detected:

- The program listing is moved to the line containing the variable
for all errors, including those detected at the end of
procedures, and the end of the program.

- A ’Store’ button has been added that will store this error, as
if the program were running in stored mode.

- The ’Ignore’ button will forget this error, and continue
checking.

- The ’Abort’ button will stop the check, and return to the editor.

NOTE: The first stored error (In any are stored) is not reported

Var_Checker 6 / 14

at the end of the check in this mode - You must press Control-V.

Help

Displays this page using AmosGuide (Requires AmosGuide to be
installed as the AMOSPro help viewer).

Cancel

Guess!

1.8 VarChecker / Checks / Undefined Local Variables

F1: Undefined Local Variables

Detected: As soon as the variable is used.

An undefined local variable is a variable which is not global, or
shared, and is refered to in the program, before it has been
defined (See Glossary)

This error occurs if the variable is used above the point in the
program at which it is defined. This should not be a problem
with well structred programs, but those which use Goto/Gosub may
find that frequently a variable is defined after the point it is
used.

NOTE: No error will occur at this stage, if the variable is a
shared or global variable. They are only reported if they are
never defined anywhere. This also applies to shared variables
when they are used in the main program.

This is the most frequently occuring error, and can be the most
dangerous. If possible (practical -it’s always possible), you
should never asssume that a variable is uninitialised, and
therefore 0, as:

- You might modify the program to use it later, and it will then
stop working.

- The program will throw out loads of ’Local Varaible Undefined’
errors, obscuring the times when you have actually mis-spelled a
variable name, which is the case when this error being in your
program makes it incorrect, and may make it crash.

NOTE: This error will only occur the first time each undeclared
variable is used in each procedure/the main program.

1.9 VarChecker / Checks / Undefined Shared & Global Variables

Var_Checker 7 / 14

F2: Undefined Shared / Global Variables

Detected: After all lines have been checked

This error occurs for variables that are defined as
Shared/Global, and are referenced one or more times, but never
have a value assigned to them anywhere in the program.

1.10 VarChecker / Checks / Unreferenced Local Variables

F3: Unreferenced Local Variables

Detected: At the end of a procedure / end of the program.

This is the opposite of the ’Undefined Local Variable’ - A value
has been assigned to a variable, but the variable is never
refered to in the arguments of a function / command. This error
only occurs within procedures during this stage of checking.

NOTE: Sometimes an unreferenced variable is not an error e.g.
A=Dialog Box(A$,0,B$). If you don’t care what the dialog box
returns, but just want to display it, A will be unreferenced. In
such cases, A should be replaced with NULL. This program does
not produce errors if NULL is unreferenced. By forcing you to
use NULL, this shows other people reading the code that it is not
used. (NULL# & NULL$ can be used when appropriate)

NOTE: This error will not occur for variables that are defined
as loop counters in For...Next loops.

1.11 VarChecker / Checks / Unreferenced Shared & Global Variables

F4: Unreferenced Shared / Global Variables

Detected: At the end of the program.

This error occurs for variables which are defined as
Shared/Global, and have a value assigned to them at some point in
the program, but are never refered to in the arguments of a
command or function.

New for V1.02: This check will also detect procedures which are
never called. NOTE: Procedure Calls from Amos Menus are NOT
detected, so you may get a procedure never called error message
in such cases.

1.12 VarChecker / Checks / Unused Shared Variables

Var_Checker 8 / 14

F5: Unused Shared Variables

Detected: At the end of a procedure

This error occurs if a variable is made shared in a procedure,
but is then not used in that procedure - I.E. it is not assigned
to, or refered to. Note the difference between this error, and
the next - they are not the same.

1.13 VarChecker / Checks / Unused Shared & Global Variables

F6: Unused Shared / Global Variables

Detected: At the end of the program

This error occurs for variables that are defined as Shared, or
Global, and then not used anywhere in the program, either in
definitions or references.

1.14 VarChecker / Checks / Global Variables that are shared

F7: Global Variables that are shared

Detected: Immediately

Making a global variable shared is a pointless exercise. Remove
the shared statement from the offending procedure. (Using the
Editor_Enhancer.AMOS Improved Search & Replace of course :-)

NOTE: Even if a global variable is shared in several procedures,
this error will only be reported once, at the line of the global
statement.

1.15 VarChecker / Checks / Variables Made Global After Use

F8: Variables made Global after use

Detected: When the variable is made global

This detects code such as:

X=4
Global X

Doing this can confuse the AMOS compiler, and it is generally bad
programming practice. Move all Global statements to the top of
your program. This is the correct way:

Var_Checker 9 / 14

Global X
X=4

NOTE: AMOSPro allows you to make variables Global inside a
procedure. Don’t do this - it will only cause compiler problems
& problems for people reading your code (Including you in 6
months time :-)

1.16 VarChecker / Checks / Labels That Are Procedure Names

F9: Labels that are procedure names

Detected: Whenever the label occurs.

If you have a procedure called FRED, and a line such as:

FRED: Print "Hello"

The Variable Checker will now point this out to you, as it is
probable that what you actually meant was:

FRED : Print "Hello"

Which means something completely different. This error occurs
whenever a label matches the name of a procedure.

1.17 VarChecker / Checks / Variable Name Missing After A ’Next’ Instruction

F10: Variable Name Missing After A ’Next’ Instruction

Detected: Immediately

This check looks at the ’Next’ instructions of For...Next loops
to ensure that the loop counter variable occurs after the ’next’.

NOTE: Putting it there does not slow things down.

1.18 VarChecker / Checks / Misuse Of Constant Variables

ESC: Misuse of Constant Variables

Detected: Immediately

AMOS does not have any concept of named constants, except the
AMOSPro equates, which is just a hack to get around this.
However, you can of course use variables as constants. This
check will make sure you obey the following rules when using a
variable as a constant:

- The name must begin with a double underscore e.g. __FRED

Var_Checker 10 / 14

This is to identify constants, against normal variables.

- It must be a global variable.

- You must assign a value to the constant before it is used.

- You must never change the value of a constant.

The variable checker makes sure you do not violate these rules.
another utility OPTIMISE.AMOS will replace constants with the
actualy values they represent, but you should check them with
this program first. If the switch is off, variable names
begining with a double underscore are treated like any other
variable.

NOTE: Changes to a constants value are not detected if they are
not made with the ’=’ operator. E.g. Add __FRED,6 is an error,
but this version of the variable checker won’t spot it. See
OPTIMISE.Doc for more information on constants.

NOTE: Variable names begining with ’ST_’ are also treated as
constants by the variable checker. This is the prefix used by the
structure compiler accessory when defining structured varaibles.

1.19 Varchecker / Miscellaneuos

Miscellaneous

Other Controls:

- All requesters can be dragged vertically by holding the mouse
button down over the title bar.

- Press Control-C to abort a check. Any errors stored before you
aborted can still be reported correctly with Control-V

- The first letter of any button in a requester can be used as a
shortcut for pressing the button.

Notes:

- If for some reason you save the VarChecker.AMOS program, erase
bank 10 first. It holds the stored errors, and must survive
between runs of varchecker, but need not be saved.

1.20 VarChecker / Cavats

Cavats

- Arrays are not checked, as AMOS requires that all arrays are

Var_Checker 11 / 14

dimensioned, before use, and produces an error if you try to
refer to an undimensioned array. However, the index parameters
are checked for references to other variables.

- The arguments of Goto/Gosub statments are not checked for
variable references, as there is no way to distinguish them from
label references. The first expression of On <exp> Goto etc.
statements is checked properly.

- Commands names that have several words, the last of which is a
single letter, and have no arguments may be mis-interpreted as
shorter command names with 1 - letter variables as arguements
e.g. An example is the AMOS Turbo Plus command ’Scene X’. This
program would interpret that as the command ’Scene’, followed by
a reference to the variable ’X’, and produce an error if ’X’ is
not defined. The program knows about a few commands such as
’Scene X’ and ignores them. If you find any others, please
E-Mail me.

- Def Fn statements are not checked for references, as they are not
interpreted at the point they are defined.

- Procedures which can not be unfolded (E.g. Contain Machine
Code), will cause this program to think any code between them and
then next procedure header is the code of the folded procedure,
and not part of the main program. To prevent this, place these
procedures at the end of your program, or follow them immediately
by another procedure. It will also generate unreferenced variable
errors for the procedure arguments.

- Wildcards in Global/Shared statements are ignored. If you didn’t
know that you could use them, don’t bother finding out how - not
only will it stop this program testing your program correctly, it
is asking for trouble, with variables "accidently" becoming
global. Don’t be lazy, and list each one explicitly. It also
makes your code easier for others to read.

- Calls to procedures from inside an AMOS Menu definiton are not
detected, and the procedure will be reported as never being
called unless it is also called from outside the menu

- The constant misuse check will not spot changes made to a
constants value by instructions such as Add, Dec, Inc.

1.21 VarChecker / Suggestions For Use

Suggestion For Use:

This program can be used in three ways:

- To find out why a program isn’t working.

- To optimise them by removing unrefered to variables.

- To remove all errors found by this program from your code, even

Var_Checker 12 / 14

if they are not "Real Errors" - E.g. this code would produce an
error but is not wrong.

Procedure COUNT_NUMBERS[S$]

X=1
While X<Len(S$)

C=Asc(Mid$(S$,X))
IF (C=>48) and (C<=57) Then Inc RESULT
Inc X

Wend
End Proc[RESULT]

However, it is better coding to add to the end of the first line,
’ : RESULT=0’. This will get rid of the ’Undefined Local
Variable’ error.

I recommed you try to make your code produce no errors from this
program, so it makes it less likely to go wrong if it is
modified. This includes not using wildcares in Global/Shared
statements (Which I only found out you could do today, and I
think it was a rather stupid idea).

1.22 VarChecker / Program History

Program History

CHANGES V1.06 ---> V1.05

- NEW FEATURE: Added context sensitive On-Line help to dialog boxes

- Check for uncalled procedures was undocumented.

CHANGES V1.05 ---> V1.04

NOTE: V1.05 was accidentally distributed with V1.04 documentation.
Sorry.

- Bug Fix: Error in deleting structures to represent local variables
fixed. Checking now uses slightly less memory.

- Improved effeciency of structured variables usage.

CHANGES V1.04 ---> V1.03

- Bug fix. Uses of shared variables in the main program were treated
as local variables. This bug was introduced in V1.03.

- Bug fix: An error in the tree deletion routine caused variables
to be "forgoten" sometimes.

- Escape & C keyboard shortcuts swapped in the main requester, so all

Var_Checker 13 / 14

buttons have their 1st letter as a shortcut

- NEW FEATURE: Extra check for global/shared variables in procedure
headers added.

- In Stored Mode, the first error is not shown until you run the
program again in report mode. Therefore you can go away and do
something else whilst it is checking without missing the first
error report.

CHANGES V1.03 ---> V1.02

- Switched to using easylife structured variables to store the
internal data. This lead to a 2-5 times speed increase, and no
problems with the AMOS variable buffer becoming full. This is
because a binary tree is used to store variable names.

- This also removed the limit of 300 variable names, as they are
not stored in an array anymore.

CHANGES V1.01 ---> V1.02

- Five new error checks added.

- Options requester added.

- Stored mode added.

- New dialog interface routines.

- Slight speed improvements. (Stored mode is much faster than
interactive, as the program listing is not scrolled).

Changes V1.00 ---> V1.01

- BUG FIX: Did not spot references to variables followed by spaces. This
happened with variable names immediately before ’and’,’or’,’div’,’mod’
etc. (Thanks to Ben Marty for spotting that one)

1.23 VarChecker / To Do

To Do

- Remove some of the cavats (DEFN: CAVAT = Bug I don’t want to call a
bug)

- Any Ideas?

Var_Checker 14 / 14

1.24 VarChecker / Cavat Reports :-)

Cavat Reports :-)

Given that the AMOS Pro editor itself sometimes cannot read your
programs correctly, I will be amazed if I have managed to cover
every possible case in this program. If you find it reports a
name that is not a variable, or fails to report an error that it
should, please E-Mail either the whole program (I never say no to
free programs), or just the line that goes wrong.

NOTE: If you use any extensions other than those listed below in
code you send, either send me the extension as well (preferable
if it’s legal), or send it in AscII form, making clear what is
command, and what is variable. I Have:

AMOS Creator Compiler
AMOS 3D
ANOS Turbo / Turbo Plus
EasyLife (Shock - Horror!)
Intuition

NOTE: The Intuition extension I have is the one by Andrew Church.
There are others, or so I hear.

	Var_Checker
	AMOSPro Variable Checker Version 1.06
	Varchecker / Introduction
	Varchecker / Requirements
	Varchecker / Distribution
	Varchecker / Glossary
	VarChecker / Installation
	VarChecker / Usage
	VarChecker / Checks / Undefined Local Variables
	VarChecker / Checks / Undefined Shared & Global Variables
	VarChecker / Checks / Unreferenced Local Variables
	VarChecker / Checks / Unreferenced Shared & Global Variables
	VarChecker / Checks / Unused Shared Variables
	VarChecker / Checks / Unused Shared & Global Variables
	VarChecker / Checks / Global Variables that are shared
	VarChecker / Checks / Variables Made Global After Use
	VarChecker / Checks / Labels That Are Procedure Names
	VarChecker / Checks / Variable Name Missing After A 'Next' Instruction
	VarChecker / Checks / Misuse Of Constant Variables
	Varchecker / Miscellaneuos
	VarChecker / Cavats
	VarChecker / Suggestions For Use
	VarChecker / Program History
	VarChecker / To Do
	VarChecker / Cavat Reports :-)

